Wednesday, 12 September 2012

CH- POLYNOMIALS for class IX


        1) Find the zeros of the polynomial            (a) x2 + 7x + 10                   (b) x2 – 25                                                                       
        2) Using factor theorem, Show that (a - b) is the factor of  a (b2-c2) +b (c2-a2) +c (a2-b2)                      
3) Factorize:  (a) 4√3x2 + 5x - 2√3                  (b) 21x2 – 2x + 1/21            (c)   9(2a – b)2 – 4(2a – b) –13  
4) Factorize:  a) 9992 - 1           b) (10.2)3               c) 1002 X 998                                      
5) Factorize: a) x3 – 3x2 – 9x – 5                              b) x3 + 7x2 – 21x – 27
  6) Factorise: (a) 3x2 + 27y2 + z2 - 18xy +6 √3yz -2 √3zx                   (b) 27 x3  + 125y3              ( c)  (2a – 3b + c )2                
                       (d)  [x – 1/x y]3                                            (e)  x4 y4 – x y                                                             
                        (f) 8x3 – (2x – y)3                                        (g) 27 a6  - 1                                                                                                                                                                           
7) For what value of a is 2x3 + ax2 + 11x + a + 3 exactly divisible by (2x – 1)                                                                                                                                    
8) If x – 2 is a factor of a polynomial f(x) = x5 – 3x4 – ax3 + 3ax2 + 2ax +4, then find the value of a 
9) Find the value of a and b so that x2 – 4 is a factor of ax4 + 2x3 – 3x2 + b x – 4                                                                                    
10) Find the value of a and b so that polynomial x3 – ax2 -13x + b is exactly divisible by (x-1) as well as (x+3)                              
11)  The polynomial  x3 – mx2 +4x + 6 when divided by (x+2) leaves remainder 14 find the value of m
12) If the polynomial ax3 + 3x2 -13 and 2x3 – 5x + a when divided by (x – 2) leave the same remainder, find the Value of “a”                                                                                                                                                                        
13) If both (x – 2) and (x – ½) are factors of px2 + 5x + r, show that p = r                                                                              
14) If f(x) = x4 – 2x3 + 3x2 – ax + b is divided by x-1 and x+1 the remainders are 5 and 19 respectively, then find a and b   
15) Show that x + 1 and 2x – 3 are factors of 2x3 – 9x2 + x + 12
16) By using suitable identity, find the value of:
 (a) (-6)3 + 133+ (-7)3                    (b) (-21)3 + (28)3             (c) (9.8)3 – (11.3)3 + (1.5)3         (d) (8/15)3  +  (-1/3)3   +    (-1/5)3            
17) Find the remainder when f(x) = 4x3 – 12x2 + 14x – 3 is divided by g(x) = x –  1                                                                         
18) Find the remainder when x51 + 51 is divided by x + 1                                                                                                                                
20) Find the remainder when x3 – px2 + 6x – p is divided by (x–p)                                                                                                              
21) Find the value of x3 + y3 + 15xy – 125 when x + y = 5                                                                                                                                  
22) Find the value of p3 – q3 , if p – q  = 5/7 and p q = 7/3                                                                                                                  
23) If a + b + c =8, a2 + b2 + c2 = 30. Find the value of a b + b c + c a                                                                                                                 
24) If 2x + 3y = 13 and x y = 6 then, find 8x3 + 27y3                                                                                                                                        
25) Find the value of a3+b3+c3–3abc, when a+b+c=8 and ab+bc+ca=25                                                                                    
26) Find the value of x3 + y3 + z3 – 3xyz, if x+y+z = 12 and x2 + y2 + z2 =70                                                                                                
27) If x + y + z = 1, x y + y z + z x = -1 and xyz = -1, find the value of x3 + y3 +z3                                                                                             
28) If (a + b)2 = 2a2 + 2b2, show that a = b                                              
29) If (a + b + c) = 0, then prove that a3 + b3 + c3 = 3abc
30) Prove that 2x3 +2y3 + 2z3 – 6xyz =(x + y + z) [(x – y )2 + ( y – z )2 + ( z – x )2 ]
31) Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given   25a2 – 35a + 12
32)Simplify : (a + b + c )2 + (a – b + c )2 + ( a + b  - c)2                                                        
33)What must be subtracted from 4x4 – 2x3 – 6x2 + x – 5, so that the result is exactly  divisible by 2x2  +  x  -  1                               
34)Find the dimensions of a cuboid, whose volume is 2py2 + 6py - 20p                                                                                   
35) If p(x) = x2 – 4x + 3, evaluate p (2) – p (-1) + p (1/2)                                                   

No comments:

Post a Comment